Short introduction to the element: Scandium

SAM®Scandium was first discovered by Lars Nilson in 1879. The origin of the name scandium comes from the Latin word ‘scandia’ meaning Scandinavia. It is a bright, silvery-white metal with active chemical properties that it easily oxidizes in air and reacts strongly with water. It has many of the characteristics of the rare earth elements, particularly yttrium.

In absolute terms, however, scandium is not rare. Scandium is abundant in minerals that it is found in concentrated amounts in the minerals euxenite, gadolinite and thortveitite; however, most of them existed as the form of scandium oxide (Sc2O3); thus due to the difficulties in the preparation of metallic scandium, global trade of the pure metal Scandium is very limited.

Scandium is usually alloyed with aluminum. Aluminum scandium alloys are used in the aerospace industry and other applications such as bicycle frames, fishing rods, golf iron shafts and baseball bats, etc. When used as an alloying element, adding a small amount of scandium to the aluminum alloy can promote grain refinement and increase the recrystallization temperature from 250 ° C to 280 ° C. Scandium is a strong grain refiner and an effective recrystallization inhibitor for aluminum alloys. It has a significant effect on the structure and properties of the alloy, and greatly improves the strength, hardness and corrosion resistance of the alloy.

Aluminum Scandium alloy

In addition to scandium alloys, garnets containing scandium are used as gain media in lasers, including those used in dental surgery, and scandium-stabilized zirconia has been recognized as a high-efficiency electrolyte in solid oxide fuel cells. Finally, scandium oxide is used in metal-halide lamps that are used to produce high-intensity white light that resembles sunlight.

Basic specification of scandium

Symbol: Sc
Atomic Number: 21
Atomic Weight: 44.95591
Color: silvery white
Other Names: Skandium, Skandij, Scandio
Melting Point: 1541 °C, 2806 °F, 1814 K
Boiling Point: 2836 °C, 5136 °F, 3109 K
Density: 2.985 g·cm3
Thermal Conductivity: 15.8 W·m-1·K-1

Please visit https://www.sputtertargets.net/ for more information about Scandium and other rare earth elements.

An overview of rare earth element

The content of rare earth elements in the earth’s crust is not that scarce as the name suggests. The total Clark value of rare earth is 234.51%, which is more than common elemental copper (Clarke value 10%), zinc (Clarke value 5%), tin (Clark value 4%) and cobalt (Clarke value is 3%). However…

Rare earth definition

Rare earth contains 17 metal elements of lanthanides as well as scandium and yttrium. Scandium and yttrium are included in rare earth element because they are often symbiotic with lanthanide elements in mineral deposits, thus have similar chemical properties.

rare earth element

Discovery of Yttrium

There are 250 kinds of rare earth minerals in nature. The first to discover rare earths element was the Finnish chemist John Gadolin, who separated the rare earth element yttrium (Y) from a bituminous heavy ore (Yttria, Y2O3) in 1794.

Origin of the name

There were few rare earth minerals discovered in the 18th century, and using  chemical methods can only a small amount of water-insoluble oxides could be produced. At that time, people often referred to water-insoluble solid oxides as earth. For example, aluminum was called “ceramic earth” and calcium oxide was called “alkaline earth”. At that time, rare earths are generally separated as oxides, and because of the small quantity, they were thus named Rare Earth (RE or R).

Rare earth is not rare

The content of rare earth elements in the earth’s crust is not that scarce as the name suggests. The total Clark value of rare earth is 234.51%, which is more than common elemental copper (Clarke value 10%), zinc (Clarke value 5%), tin (Clark value 4%) and cobalt (Clarke value is 3%). However, the distribution of rare earth elements is too scattered, and these seventeen elements always exist at the same time, so the total purity is not high. In general, minerals containing 10% rare earths can be called rare earth-rich ores; pure rare earth products are expensive due to their similar properties and difficulty in extraction.

Physicochemical property

  1. Lack of sulfides and sulfates, indicating that the rare earth elements have oxytropism;
  2. The silicate of rare earth is mainly island-shaped, without layered, frame-like and chain-like structures;
  3. Some rare earth minerals (especially complex oxides and silicates) exhibit an amorphous state;
  4. The rare earth minerals mainly include silicates and oxides in magmatic rocks and pegmatites, and fluorocarbonates and phosphates in hydrothermal deposits and weathering crust deposits;
  5. Rare earth elements are often symbiotic in the same mineral due to their similar atomic structure, chemical and crystal chemical properties. That is to say that the rare earth elements of the cerium and the yttrium are often present in one mineral. But these elements do not coexist in equal amounts– some minerals are mainly composed of cerium, and some minerals are mainly yttrium.

Please visit http://www.sputtering-targets.net/ for more information.

How was tantalum discovered? | History of Tantalum

In the middle of the 17th century, a very heavy black mineral (density of SAM®Tantalum is 16.68 g/cm3) found in North America was sent to the British Museum for safekeeping. After about 150 years, in 1801, British chemist Charles Hatchett accepted the ore analysis task from the British Museum. He discovered a new element and named it Columbium (later renamed Niobium) to in honor of the place where the mineral was first discovered – Colombia.

Tantalum

In 1802, when the Swedish chemist Anders Gustaf Ekberg analyzed their minerals (the niobium-tantalum ore) in Scandinavia, he discovered a new element. He named it Tantalum, referring to the name of Tantalus, the son of Zeus God in Greek mythology.

Because Niobium and Tantalum are very similar properties, they were once thought to be the same element. In 1809, the British chemist William Hyde Wollaston compared the Niobium oxide and Tantalum oxide. Although they gave different density values, he still believed that the two were identical substances.

Tantalum Discovery History

By 1844, the German chemist Heinrich Rose refuted the conclusion that Niobium and Tantalum were the same elements, and proved that they are two different elements through chemical experiment. He named the two elements “Niobium” and “Pelopium” in the name of the Greek mythology of Tantalus’s daughter Niobe (the goddess of tears) and the son of Pelops.

In 1864, Christian Wilhelm Blomstrand, Henry Edin St. Clair Deville and Louis Joseph Troost clearly proved the Tantalum and Niobium are two different chemical elements ,and determined the chemical formula of some related compounds. In the same year, Demarinia heated tantalum chloride in a hydrogen atmosphere, and got tantalum metal for the first time through a reduction reaction. Early tantalum metals contain many impurities, and it was not until 1903 that Werner von Bolton first made pure tantalum metal.

This is a history column of SAM Sputter Target, aiming at introducing the history of different metals. If you are a metal lover or history lover, you can follow our website. For previous posts of metal history, you can search the keyword “history”.

Please visit https://www.sputtertargets.net/ for more information.

How was aluminum discovered?| History of Aluminum

AluminumDiscovery

Humphry Davy
Humphry Davy

Compared with other metal elements we discussed about before, Aluminum is discovered much later. In 1808, the British chemist Sir Humphry Davy confirmed the existence of alum and named the substance to Alumium (later changed to Aluminum).

In 1825, Danish chemist and physicist Hans Christian Ørsted began experimenting about aluminum extraction. However, it was not until 1827 that Friedrich Wöhler reduced the molten anhydrous aluminum chloride with potassium metal to obtain a purer metallic aluminum element.

As precious as gold

However, as Wöhler’s method could not yield great quantities of aluminium, the metal remained rare; its cost exceeded that of gold. It is for this reason that aluminum was in a high position at that time. It is said that at a banquet, the French emperor Napoleon used aluminum knives and forks alone, while others used silver tableware. Also, the king of Thailand once used an aluminum bracelet.

Mass production

Charles Martin Hall
Charles Martin Hall

In 1886, French engineer Paul Héroult and American engineer Charles Martin Hall, respectively, independently electrolyzed a mixture of molten bauxite and cryolite to produce metal aluminum, which laid the foundation for large-scale production of aluminum in the future. Since then, the status of aluminum has changed completely, mainly in two aspects: first, it is mass-produced and is no longer regarded as a precious metal; the mass production of aluminum in industrial and domestic applications has gradually replaced the use of other metals such as steel and copper in many fields.

Application Prospect

At present, the aluminum industry has problems such as overcapacity and insufficient utilization, so the development prospects of the aluminum industry in the short term are not optimistic.

However, due to the abundant reserves of aluminum in the earth’s crust and the advantages over other metal elements, aluminum will have extremely broad application prospects in the future. For example, automakers are currently exploring the use of large-area aluminum alloy instead of steel to make the car lighter.

With the advancement of technology, aluminum alloy products will not only grow rapidly in traditional applications such as aerospace, transportation, electronic power, and construction, but will also grow rapidly in other new fields.

 

This is a history column of SAM Sputter Target, aiming at introducing the history of different metals. If you are a metal lover or history lover, you can follow our website. For previous posts of this column please search the keyword “history”.

 

Please visit https://www.sputtertargets.net/ for more information.

Discovery and application of vanadium | History of Vanadium

Discovery of vanadium

Andrés Manuel del Río
Andrés Manuel del Río

In 1801, the Mexican mineralogist Andrés Manuel del Río discovered a new element similar in nature to chromium and uranium when he studied lead ore. Its salt is red when heated in acid, so Leo named it red mud. However, it is actually vanadium.

 

In 1830, the Swedish chemist Nils Gabriel Sefström isolated a new element in the refining process of iron. Due to its brilliant color, he named it Vanadium under the name of the beautiful goddess Vanadis in Greek mythology. In the same year, the German chemist Friedrich Wöhler proved that Vanadium was the same element as the red element discovered by the early Andrés Manuel del Río – vanadium.

Henry Roscoe
Henry Roscoe

In 1867, the British chemist Henry Roscoe reduced the vanadium chloride (VCl3) with hydrogen to produce metal vanadium for the first time.

The origin of the name

A long time ago, a beautiful goddess named Vanadis lived in the far north. One day, a distant guest came knocking on the door. The goddess was sitting leisurely on the circle chair. She thought: If he knocked again, I would open the door. However, the knock on the door stopped and the guest left. Vanadis wants to know who this person is, why is he so lacking in self-confidence? So she opened the window and looked out. It turned out that a man named Wöhler was coming out of her yard. A few days later, the goddess heard someone knocking on the door again, and the knocking of the door didn’t stop until the goddess opened the door. This is a young and handsome man named Sefström. The goddess soon fell in love with him and gave birth to his son, vanadium.

The application history of vanadium

After discovering the metal of vanadium, people gradually learned about its properties and began to apply it to our daily lives. In 1882, a British company used vanadium-containing slag containing 1.1% vanadium to produce vanadium phosphate with an annual output of about 60 tons.

In the late 19th and early 20th centuries, Russia began to reduce iron and vanadium oxides by carbon reduction, and for the first time prepared vanadium-iron alloys (including V35% to 40%). From 1902 to 1903, Russia tested an aluminothermic method for the preparation of ferrovanadium.

At the end of the 19th century, the study also found that vanadium can significantly improve the mechanical properties of steel in steel, making vanadium widely used in industry. By the beginning of the 20th century, people began to mine vanadium.

So far, the world’s vanadium-producing ore is mainly composed of vanadium-titanium magnetite, and there are abundant resources in Russia, South Africa, China, Australia and the United States. In addition, vanadium uranium, bauxite, phosphate rock, carbonaceous shale, petroleum combustion ash, spent catalyst, etc. can also be considered as resources of vanadium.

This is a history column, aiming at introducing the discovery of different kinds of metals. If you are a metal lover or history lover, you can follow our website. For previous posts of this column please search the keyword “history”.

Please visit https://www.sputtertargets.net/ for more information.

Discovery and development of tungsten | History of Tungsten

tungsten

The history of tungsten dates back to the 17th century. At that time, miners in the Erzgebirge Mountains of Saxony, Germany, noticed that some of the ore would interfere with the reduction of cassiterite and produce slag. The miners gave the mines some German nicknames: “wolfert” and “wolfrahm”.

Axel Fredrik Cronstedt
Axel Fredrik Cronstedt

In 1758, the Swedish chemist and mineralogist Axel Fredrik Cronstedt discovered a mineral called “tungsten”, which means “heavy stone” in Swedish. He was convinced that this mineral contained an element that had not yet been discovered.

 

Continue reading “Discovery and development of tungsten | History of Tungsten”

What is Magnesium Fluoride?

Chemical Formula of Magnesium Fluoride
Chemical Formula of Magnesium Fluoride

SAM®Magnesium fluoride is an inorganic compound with the formula MgF2, which is a white, fluorescent crystal. It is insoluble in water and alcohol, and soluble in nitric acid. It can be used in ceramics and glass. Magnesium Fluoride is one of the lowest index infrared materials that it is transparent over a wide range of wavelengths, thus is used for optical elements in both the infrared and ultraviolet. It is resistant to thermal and mechanical shock and is twice as hard as Calcium Fluoride.

Continue reading “What is Magnesium Fluoride?”

How was niobium discovered? | History of Niobium

Last week, we talked about the discovery of Titanium, which raised many interest. So we decide to start a history column, aiming at introducing the discovery of different kinds of metals. If you are a metal lover or history lover, you can follow our website. For previous posts of this column please search the keyword “history”. So let’s get down to the point. Today SAM Sputter Targets will teach you the history lesson of Niobium.

niobium hostorySAM®Niobium, often found in the minerals pyrochlore and columbite, is a silver-gray, soft and ductile rare metal with high melting point. At normal temperature, niobium does not react with air, but it can directly combine with sulfur, nitrogen and carbon at high temperatures to form NbS2, NbN and NbC. Niobium does not react with inorganic acids or alkalis, and is insoluble in aqua regia, but soluble in hydrofluoric acid. Because of its good superconductivity, high melting point, corrosion resistance and wear resistance, niobium is widely used in steel, superconducting materials, aerospace, atomic energy and other fields.

Continue reading “How was niobium discovered? | History of Niobium”

Application of molybdenum in metal smelting

Compared to metals such as titanium, aluminum and platinum, molybdenum does not seem to be as famous, but it is also a very widely used metal in our life. So in the next few weeks, SAM Sputter Targets will introduce different applications of molybdenum. If you are interested in metals, please follow us for subsequent updates. Today we will first introduce the application of molybdenum in metal smelting.

Molybdenum
Molybdenum

Steel

The main use of molybdenum is to produce various types of steel and alloys. The addition of molybdenum (mainly in the form of ferromolybdenum, molybdenum oxide and calcium molybdate) to a range of steels such as structural steel, spring steel, bearing steel, tool steel, stainless steel and magnetic steel can significantly improve the properties of steel. Molybdenum improves the hardenability, toughness and heat strength of steel and prevents temper brittleness. Molybdenum also improves the corrosion resistance of steel to certain media so that it does not pitting. The addition of molybdenum to the cast iron enhances the strength and wear resistance of the cast iron.

Continue reading “Application of molybdenum in metal smelting”

How was titanium discovered? | History of Titanium

Titanium historySAM®Titanium is a metal element that is known as “space metal” because of its light weight, high strength and good corrosion resistance. The most common compound of titanium is titanium dioxide, and other compounds include titanium tetrachloride and titanium trichloride. At present, titanium is widely used in aerospace, automotive, medical, marine and other fields. Its abundant reserves provide a resource base for the wide application of titanium – titanium is one of the most widely distributed and abundant elements in the earth’s crust, accounting for 0.16% of the crustal mass, ranking ninth. However, do you know how this magical element was discovered? Let SAM Sputter Targets give you a history lesson.

Continue reading “How was titanium discovered? | History of Titanium”