The Benefits of Using Chromium Pellets for Thermal Evaporation in Manufacturing

Manufacturing processes have always been evolving, and with the advancements in technology, companies are constantly looking for ways to improve efficiency and reduce costs. One such method that has gained popularity in recent years is the use of chromium pellets for thermal evaporation. These pellets, made of high-purity chromium metal, are used in vacuum deposition processes to create thin films on various substrates. The benefits of using chromium pellets for thermal evaporation are numerous, including improved film quality, reduced manufacturing costs, and increased production rates.

In this article, we will explore the advantages of using chromium pellets in manufacturing and why it has become the preferred method for many industries. So, let’s dive in and discover the world of thermal evaporation and the benefits of using chromium pellets.

What are Chromium Pellets for Thermal Evaporation?

Chromium pellets are small, cylindrical-shaped pieces of high-purity chromium metal that are used in thermal evaporation. Thermal evaporation is a vacuum deposition process, where a material is heated to its evaporation point, and the vaporized material is condensed onto a substrate to form a thin film. Chromium pellets are one of the most popular evaporation materials used in the manufacturing industry, as they offer several advantages over other materials commonly used for thermal evaporation.

Advantages of Using Chromium Pellets

There are several advantages of using chromium pellets for thermal evaporation. The first advantage is improved film quality. Chromium pellets produce high-quality films with excellent adhesion, uniformity, and smoothness. The films produced using chromium pellets are also very stable and have good chemical and mechanical properties, making them ideal for a wide range of applications.

The second advantage of using chromium pellets is reduced manufacturing costs. Chromium pellets have a high evaporation rate, which means that less material is needed to produce the same amount of film. This results in reduced material costs, as well as reduced energy costs, as less energy is required to evaporate the material.

The third advantage is increased production rates. Due to its high evaporation rate, more chromium pellets can be evaporated in a shorter amount of time. This results in increased production rates, which can help companies meet their manufacturing goals faster and more efficiently.

Properties of Chromium Pellets

Chromium pellets are made of high-purity chromium metal, which means that they have excellent physical and chemical properties. Chromium is a hard, lustrous metal that has a high melting point and is resistant to corrosion. Chromium pellets are also very stable and have good mechanical and chemical properties, making them ideal for a wide range of applications.

Comparison of Chromium Pellets with Other Evaporation Materials

Chromium pellets are one of the most popular evaporation materials used in the manufacturing industry, but there are several other materials that are also commonly used. These include aluminum, gold, silver, and copper, among others. While each of these materials has its own advantages and disadvantages, chromium pellets are often preferred due to their excellent film quality, reduced manufacturing costs, and increased production rates.

Applications of Chromium Pellets in Manufacturing

Chromium pellets are used in a wide range of manufacturing applications. Some of the most common applications include the production of thin films for electronics, optics, and solar cells. Chromium pellets are also used in the production of decorative coatings, as well as in the production of hard coatings for cutting tools, molds, and dies.

How to Use Chromium Pellets for Thermal Evaporation

Using chromium pellets for thermal evaporation is a relatively simple process. The first step is to load the pellets into a crucible, which is then placed into the evaporation system. The system is then evacuated to a high vacuum, and the pellets are heated to their evaporation point using an electron beam or resistive heating. The vaporized material is then condensed onto a substrate to form a thin film.

Maintenance and Storage of Chromium Pellets

To ensure the longevity and optimal performance of chromium pellets, proper maintenance, and storage are essential. Chromium pellets should be stored in a dry, cool place, away from moisture and other contaminants. When not in use, the pellets should be stored in an airtight container to prevent oxidation. Before use, the pellets should be cleaned using a mild solvent to remove any surface contaminants.

Where to Buy Chromium Pellets for Thermal Evaporation

Chromium pellets for thermal evaporation can be purchased from a wide range of suppliers. It is important to choose a reputable supplier that offers high-purity chromium pellets that are free from contaminants. One of the most popular suppliers of chromium pellets is Stanford Advanced Material (SAM).

Conclusion

In conclusion, using chromium pellets for thermal evaporation is a highly effective method for producing high-quality films in a wide range of manufacturing applications. The benefits of using chromium pellets include improved film quality, reduced manufacturing costs, and increased production rates. With proper maintenance and storage, chromium pellets can provide optimal performance and longevity, making them an excellent investment for any manufacturing company.

ITO Glass – Thinner Is Better?

In recent years, the requirements for processing technology in various industries have been continuously improved. ITO (indium tin oxide) materials, for instance, have stricter criteria for line width and processing interval for ITO conductive patterns. The subject of whether the ITO laser etching machine can produce lines smaller than 20 microns comes up frequently. Is a 20-micron processing interval possible? The answer is yes. So what is the smallest line width of the ITO laser etching machine? Let SAM Sputter Target answer it for you.

What Determines the Line Width?

The laser and the optics define the thickness of the ITO line width, which is related to the size of the focus spot and the thermal impact of the source on the material. A line with a thinner width might be produced by a shorter wavelength because it has lower energy, a narrower pulse width, a higher beam expander magnification, a smaller field lens negative, and a smaller spot size. Several of the aforementioned parameters, of course, have a relative limit value. For instance, if the beam expander’s magnification is too great, the energy density will be inadequate and unsuitable for processing. As a result, we must choose a variety of values and apply them to the processing requirements.

In addition, even with the same laser etch machine, the line widths made by different materials are different. For example, the etch line width of a nickel alloy material is thicker than that of an ITO material, depending on the absorption of the laser wavelength by the material itself. This article analyzes based on ITO conductive glass.

ITO glass

Thickness Requirements of Different Industries

The general requirement for ITO glass in the touch screen industry is less than 20 microns, which uses a narrow pulse-width infrared nanosecond laser. Different industries have different requirements for ITO line width. In some industries, the resistance of ITO line width has relatively high requirements, while in some industries, it is required to ensure that it is cut and insulated. In the current laser market, the minimum line width of ITO conductive glass is 5 micrometers, and different line widths can be selectively selected according to different light sources. For example, the minimum line width of an ultraviolet nanosecond laser can be 15 micrometers. Of course, there are also EUV lithography machines that can achieve nanometer levels by means of extreme ultraviolet lasers. The requirements for line width are mainly determined by different product requirements.

Thinner is Better?

From the above, you can see that different industries have different thickness requirements for ITO glass. What is certain is that the thinner is not always the better. It still needs to be designed and manufactured according to the specific application.

Impact of Thin Film Technology on The Crystalline Silicon Industry

Judging from the current development of photovoltaic technology, thin films, especially CIGS thin films, will gradually become the mainstream of solar power generation.

Thin-Film Solar Cell

Thin-film photovoltaic cells, also known as solar cells, are devices that use the photovoltaic effect to convert light energy into electrical energy. They are considered novel photovoltaic devices that can alleviate the energy crisis.

Thin-film solar cells can be fabricated on substrates using materials such as ceramics, graphite, and metal sheets. These raw materials, while relatively cheap, work very well. They can make thin films with a thickness of only a few micrometers, and the current conversion efficiency can reach 13%.

In addition to planar, thin-film solar cells can also be made into non-planar structures because of their flexibility. Therefore, they have a wide range of applications and can be combined with or become part of buildings.

CIGS Film

The aforementioned CIGS is mainly composed of Cu (copper), In (indium), Ga (gallium), and Se (selenium), and the complete chemical formula is CuInxGa(1-x)Se2. This material has many advantages, including strong light absorption ability, good power generation stability, high conversion rate, long daytime power generation time, low production cost, short energy recovery cycle, etc.

Polycrystalline Silicon Solar Cells
Ogunshile, Emmanuel. (2017). An Investigation into the Use of Hybrid Solar Power and Cloud Service Solutions for 24/7 Computing. 743-754. 10.5220/0006380007430754.

CIGS VS. Silicon

Why thin film technology will beat traditional crystalline silicon products? Comparing the two, you will find the following results.

  • The absolute power generation of the thin film is higher, and the average power generation is about 8-10% higher than that of crystalline silicon (depending on the location and climate of the power station).
  • The decay rate of CIGS thin film power generation is controllable, which means that the occurrence of power generation decay can be controlled by adopting effective technical means. The practice has proved that during the operation of the CIGS thin-film station, the power generation does not decrease, but increases slightly.

For the comparison between CIGS thin film and Silicon materials, you can refer to this article Silicon Thin-Film VS. CIGS Thin-Film for Solar Panels.

Conclusion

Although the crystalline silicon industry has matured and the conversion efficiency of monocrystalline silicon has also been improved, technical shortcomings restrict the sustainable development of the crystalline silicon industry. What’s worse is that its industrial chain is long, the cost is difficult to control, and crystalline silicon products are not competitive. From this point of view, the development of thin film technology, especially CIGS thin film, will get better and better.

Stanford Advanced Materials (SAM) is a global sputtering target manufacturer which supplies high-quality and consistent products to meet our customers’ R&D and production needs. We provide high-purity CIGS materials and we insure you will be satisfied with our products. Please visit our website https://www.sputtertargets.net/ for more information.

 

Application of Molybdenum Target in Mobile Phone LCD Screen

Nowadays, society is full of phubbers, and mobile phones have become the most indispensable thing for the masses. Mobile phone displays are also becoming more and more high-end, such as full-screen design, small bang design, and so on.

Do you know what the important step is in making a mobile phone LCD screen? — Coating, using magnetron sputtering to sputter metal molybdenum from the molybdenum target onto the liquid crystal glass.

As an advanced film material preparation technology, sputtering has two characteristics of “high speed” and “low temperature”. It concentrates ions into a high-speed ion stream in a vacuum to bombard a solid surface. The kinetic energy exchange between the ions and the atoms on the solid surface causes the atoms on the solid surface to leave the target and deposit on the surface of the substrate to form a nano (or micro) film. The bombarded solid is a material for depositing a thin film by sputtering, which is called a sputtering target.

In the electronics industry, molybdenum sputtering targets are mainly used for flat panel displays, electrodes and wiring materials for thin film solar cells, and barrier materials for semiconductors. These are based on its high melting point, high electrical conductivity, low specific impedance, good corrosion resistance, and good environmental performance.

Molybdenum used in components of LCDs can greatly improve the brightness, contrast, color, and life of the LCD. One of the major applications for molybdenum sputtering targets in the flat panel display industry is in the TFT-LCD field.

molybdenum target

In addition to the flat panel display industry, with the development of the new energy industry, the application of molybdenum sputtering targets on thin film solar photovoltaic cells is also increasing. The molybdenum sputtering target mainly forms a CIGS (Copper Indium Gallium Selenide) thin-film battery electrode layer by sputtering. Among them, molybdenum is at the bottom of the solar cell, and is a back contact of the solar cell. It plays an important role in the nucleation, growth, and morphology of the CIGS thin film crystal.

Stanford Advanced Materials(SAM) is a global sputtering targets manufacturer which supplies high-quality and consistent products to meet our customers’ R&D and production needs. Please visit https://www.sputtertargets.net/ for more information.

PVD Coating: Give Your Watch a Durable Coat

For most people who could not afford a pure gold watch, a gold coating may be a good choice for them. However, since it is a thin film coating, it is inevitable that the gold color would fade out. So the primary consideration in choosing the coating material/method is durability. If you want to give your watch a durable coat, you really should think about PVD coating.

What is PVD coating?

PVD coating, or Physical Vapor Deposition, refers to a variety of vacuum deposition techniques where solid metal is vaporized to produce thin films and coating. The main methods of physical vapor deposition include vacuum evaporationsputtering depositionarc plasma platingion plating, etc. PVD film has fast deposition speed as well as strong adhesion, good diffraction, and a wide application range.

Maybe you will find it not easy to understand it since PVD is a physical terminology. But actually, as a watch lover, you should just know that PVD coating can provide a metal coat to your watch, making it more beautiful and durable.

Why should you choose PVD coating?

PVD coating has high hardness, high wear resistance, low friction coefficient, good corrosion resistance, and chemical stability. So PVD coating would definitely have a longer lifetime than other traditional coatings. Apart from durability, PVD coating provides multiple kinds of metallic colors, such as gold(TiN), rose gold(TiAlN), silver(Cr2N), brass(ZrN), light grey(TiC), and so on. You will always find the one you like.

PVD Coating Colors

More tips

If you are going to give your watch a PVD coating after reading this blog, I’d like to help you save time in choosing the coating materials. Please consider Stanford Advanced Materials (SAM), which is a global supplier of various technical-grade coating materials as well as high-purity chemicals (up to 99.99999%). All of the coating materials we talked about above can be found on SAM’s website. We ensure that you can get your watch the most durable coat here.

Application and Recycling of Tungsten Metals

Tungsten, a relatively rare and exotic metal, has been widely used in many products in our daily life. Tungsten has the advantages of high melting point, high hardness, excellent corrosion resistance, and good electrical and thermal conductivity. Most of its applications are based on these properties. Tungsten is not cheap because of its scarcity, but the price of tungsten is quite reasonable compared with the prices of other rare and exotic metals.

What are the Applications of Tungsten?

Tungsten is an important alloying element for the aerospace industry and the industrial gas turbine industry, because it can significantly improve the strength, hardness, and wear resistance of steel.

Tungsten filament is used in incandescent bulbs to replace tantalum, which was used many years ago, as an integral part of copper and silver electrical contacts for improved wear resistance.  Tungsten wire can also be used to manufacture direct heating cathodes and grids of electronic oscillation tubes and cathode heaters in various electronic instruments.

Tungsten sputtering target & Ta evaporation pellets can be used as wear-resistant coatings for mechanical parts, as evaporating filaments for physical vapor deposition (PVD) of aluminum and silver, and as key barrier electrons for barrier coatings in critical electronic devices.

Some of the other applications of Tungsten include the component of chemicals and catalysts, cutting blades, paints, pigments, inks, lubricants, etc.

How to Recycle Tungsten?

Tungsten’s unique properties of heavy weight, high hardness, and high melting point make tungsten waste ideal for recycling. The fact that it is chemically resistant is a key factor in tungsten recycling. Therefore, recycling tungsten-bearing scrap is more popular. The methods of tungsten recycling can be roughly divided into the direct method and the indirect method.

Direct Tungsten Recycling

The direct method means that the tungsten waste is converted into a powder of the same composition by chemical or physical treatment or a combination of both. A typical example of a direct method is a zinc treatment method. This method has many advantages, such as limited energy consumption and chemical waste, as well as low production costs. A disadvantage of this method is the limitation on recycled materials.

Indirect Tungsten Recycling

Indirect methods, such as wet chemical processing, are commonly used in refining processes. This type of recycling has no restrictions on materials, but requires a lot of chemicals and energy.

For more information, please visit https://www.sputtertargets.net/.

An Overview of Mammary Gland Molybdenum Target X-Ray Inspection

Technology Introduction

Molybdenum target inspection is a new digital imaging technology that combines traditional radiology technology with modern computer technology. It finally transforms the ordinary X-ray image into a digital image that can be quantized. The traditional X-ray film technology and the qualitative quality of image quality make it easier for radiologists to find suspicious malignant lesions in mammography, which is considered to be a method to improve the early detection rate of breast cancer.

Advantages

The mammography system has the characteristics of clear imaging, convenient and quick inspection operation, and small radiation dose. The instrument can accurately detect the shape, size, density, and nature of breast hyperplasia, lesions, masses, and calcifications. It can accurately judge and identify calcifications of breast lesions that cannot be identified by color Doppler ultrasound, and is known as the “gold standard” for international breast disease examination.

As a non-invasive method of examination, mammary gland Molybdenum target X-Ray inspection has a relatively small pain in the examination of the breast. The images retained are available for comparison before and after, regardless of the limit of age or body shape. Mammography has now become a routine breast disease examination with a sensitivity of 82% to 89% for breast cancer and a specificity of 87% to 94%.

Molybdenum target mammograms of a patient.
Molybdenum target mammograms of a patient. (a) and (b) are molybdenum target mammograms of the patient’s left breast from the craniocaudal (CC) and mediolateral oblique (MLO) views, respectively, while (c) and (d) are molybdenum target mammograms of the patient’s right breast from the CC and MLO views, respectively. Sun, Lilei & Jie, Wen & Wang, Junqian & Zhao, Yong & Zhang, Bob & Wu, Jian & xu, Yong. (2022). Two‐view attention‐guided convolutional neural network for mammographic image classification. CAAI Transactions on Intelligence Technology. n/a-n/a. 10.1049/cit2.12096. 

Unique value

1 It can be used as a relatively non-invasive method of examination, and it can fully and accurately reflect the structure of the entire breast.

2 Molybdenum target inspection can be used to observe the effects of various physiological factors (such as menstrual cycle, pregnancy, lactation, economic status and endocrine changes) on the mammary gland structure, and can be used for dynamic observation.

3 Benign lesions and malignant tumors of the breast are relatively reliably identified.

4 Breast cancer can be detected early, and even occult breast cancer that is not clinically detectable can be detected.

5 According to the Molybdenum target inspection, some precancerous lesions can be found and can be followed up for observation.

Conclusion

In conclusion, Mammary gland Molybdenum target X-Ray inspection is currently the first choice and the easiest and most reliable non-invasive detection method to diagnose breast diseases. It is relatively less painful, easy to operate, and has high resolution.

Stanford Advanced Materials (SAM) Corporation is a global supplier of various sputtering targets such as metals, alloys, oxides, and ceramic materials which are widely used in the medical industry.  We will regularly update knowledge and interesting stories of sputtering targets on our website. If you are interested, please visit https://www.sputtertargets.net/ for more information.

Metal Molybdenum Target Used in Mobile Phone LCD Screen

Nowadays, mobile phones have become the most indispensable thing for the masses. Mobile phone displays are also becoming more and more high-end, such as full-screen designs, small bang designs, and so on.

One of the most important steps in making a mobile phone LCD screen is thin film coating, using magnetron sputtering to sputter the molybdenum target onto the liquid crystal glass to form a Mo thin film. Molybdenum thin films have the advantages of high melting point, high electrical conductivity, low specific impedance, good corrosion resistance and good environmental performance. Compared with the chromium film, the specific impedance and film stress of the molybdenum film are only half of that.

As an advanced film material preparation technology, sputtering has two characteristics of “high speed” and “low temperature”. It concentrates ions into a high-speed ion stream in a vacuum to bombard a solid surface. The kinetic energy exchange between the ions and the atoms on the solid surface causes the atoms on the solid surface to leave the target and deposit on the surface of the substrate to form a nano (or micro) film. The bombarded solid is a material for depositing a thin film by sputtering, which is called a sputtering target.

mobile phone lcd screen

In the electronics industry, molybdenum sputtering targets are mainly used for flat panel displays, electrodes and wiring materials for thin film solar cells, and barrier materials for semiconductors. These are based on its high melting point, high electrical conductivity, low specific impedance, good corrosion resistance, and good environmental performance.

Molybdenum used in components of LCDs can greatly improve the brightness, contrast, color, and life of the LCD. One of the major applications for molybdenum sputtering targets in the flat panel display industry is in the TFT-LCD field.

In addition to the flat panel display industry, with the development of the new energy industry, the application of molybdenum sputtering targets on thin film solar photovoltaic cells is also increasing. The molybdenum sputtering target mainly forms a CIGS (Copper Indium Gallium Selenide) thin-film battery electrode layer by sputtering. Among them, molybdenum is at the bottom of the solar cell, and as a back contact of the solar cell. It plays an important role in the nucleation, growth, and morphology of the CIGS thin film crystal.

For more information, please visit https://www.samaterials.com/.

Classification of Molybdenum Target Materials

Molybdenum sputtering targets perform the same as their source material (pure molybdenum or molybdenum alloy). Molybdenum is a metallic element mainly used in steel, where it improves the strength, hardness, weldability and toughness of alloys, as well as high temperature and corrosion resistance. Molybdenum targets are one of the important sputtering materials and are used in aerospace, semiconductor, solar and many other applications.

Different Shapes of Sputtering Target
Different Shapes of Sputtering Target

Classify by Shape of Molybdenum Target

According to the shape of the target, the molybdenum target can be divided into square molybdenum target, circular molybdenum target, molybdenum plate target, rotatory molybdenum target, and molybdenum tube target.

The square molybdenum target has the characteristics of high melting point, high electrical conductivity, low impedance, good corrosion resistance and good environmental performance. It is the most widely used planar molybdenum target.

The circular molybdenum target, or the disc molybdenum target, also has a wide range of applications, which can form films on various types of substrates, and these films can be widely used in electronic components and electronic products.

Molybdenum plate target common thickness is 0.09 inch ~ 3 inch and the surface shows silver-gray metallic luster. Common Specifications (mm) is BCM = 9.9 (0.3-10) (60-400) 800 or bigger.

The rotatory molybdenum target is a rotatable sputtering target that is usually cylindrical and has a fixed magnet so that it will rotate at a low speed during operation.

The length of the molybdenum tube target is generally ≤3000mmm, and the outer diameter is ≤250mm. The wall thickness is 3-25 mm and the flatness is 0.1 mm. In addition, its shape is tubular and the surface shows a silver metallic luster.

Classify by Applications of Molybdenum Target

According to its application, the molybdenum target can be divided into the X-ray molybdenum target, the coated molybdenum target, and etc. Stanford Advanced Materials offers a wide range of high performance, high quality molybdenum targets.

Coated molybdenum target has good properties, including excellent high temperature performance, high temperature physical strength, high elastic modulus, excellent thermal conductivity and corrosion resistance and other properties, so commonly used in the field of coatings, as coating materials.

X-ray molybdenum targets are commonly used in the medical field for breast examination of women. X-ray mammography as a non-invasive method can more fully and accurately reflect the structure of the entire breast.

If you have any interest in molybdenum metal targets, please visit our website at https://www.sputtertargets.net/.

Seven Sputtering Targets and Their applications

Tantalum is used as a barrier layer on silicon wafers for semiconductor production, and tantalum is used in all modern electronic products. Mobile phones, DVD and Blu-ray players, laptops, etc. Car electronics and even game consoles contain tantalum.

Niobium is commonly used in electronic products and its properties are similar to tantalum. Niobium has corrosion resistance due to its oxide film and is considered a superconductor.

Titanium has the characteristics of light weight and corrosion resistance, and can be used in various conventional products including watches, notebook computers and bicycles. Titanium is commonly used for wear resistance and aesthetic design, but can also be used for semiconductor and optical coatings.

Read more: Everything You Need to Know About Titanium Sputtering Target

Tungsten film is a decorative coating, due to its thermal, physical and mechanical properties (such as high melting point
And thermal conductivity) and widely used.

Molybdenum has a lower density and a consistent price, and can be used to replace tungsten. It is usually used to coat solar panel cells.

black and white solar panels

It is often used as an insulator for semiconductors, as well as surface hardness and protective layer. As an element with a high dielectric constant, it can improve the performance of certain electronic devices.

This target material is most commonly used in the production of silicon solar cells.