Pros & Cons of 4 Film Manufacturing Methods

The properties of the thin film are determined by the manufacturing method, and different methods have their own advantages and disadvantages. Commonly used preparation processes include magnetron sputtering, chemical vapor deposition, vacuum evaporation, pulsed laser deposition, etc. Among them, magnetron sputtering deposition technology has been widely researched and applied due to its high film formation rate and good uniformity.

thinfilm_main

Magnetron Sputtering

The basic principle of the method is that under the action of electric and magnetic fields, the accelerated high-energy particles (A, +) bombard the surface of the target, and after the energy is exchanged, the atoms on the surface of the target escape from the original lattice, and finally, the sputtering particles are deposited on the surface of the substrate and react with oxygen atoms to form an oxide film. The magnetron sputtering process is characterized by excellent optical and electrical properties of the film deposited at low temperatures. In addition, it has the advantages of a high deposition rate, low substrate temperature, good film adhesion, easy to control, and large-area film formation. Therefore, it has become the most researched and widely used film-forming technology in industrial production today as well as a research hotspot in ITO film preparation technology.

Chemical Vapor Deposition

The chemical vapor deposition method is a process in which a gaseous reactant (including a gaseous reactant that becomes a vaporized condensed matter after evaporation) is chemically reacted on the surface of the substrate to deposit a film. This chemical reaction occurring on the surface of the substrate is usually the thermal decomposition and in-situ oxidation of the source material. The reaction system selected by the CVD method must satisfy:

(1) At the deposition temperature, the reactant must have a sufficiently high vapor pressure;
(2) The chemical reaction product must be in a gaseous state except for the solid matter deposited on the substrate;
(3) The vapor pressure of the deposit should be low enough to ensure good adsorption on a substrate having a certain temperature.

Vacuum Evaporation

The vacuum evaporation method is a method in which a raw material of a to-be-formed film in an evaporation vessel is vaporized from a surface to form a vapor stream, and is incident on a surface of the substrate to react with a gas to form a film in a vacuum chamber. A high-quality ITO film can be prepared by the electron beam evaporation deposition method, in which the evaporation substance is In2Odoped with SnO2, and the mass percentage of SnO2 is 10%. Under suitable process conditions, the deposited film has a minimum resistivity of 4×10-4 Ω•cm and an average transmittance in the visible range of more than 90%.

Pulsed Laser Deposition

The pulsed laser deposition (PLD) process is a very competitive new vacuum physical deposition process developed in recent years. Compared with other processes, it has the advantages of precise control of stoichiometry, synthesis, and deposition, and no requirement for the shape and surface quality of the target, so the surface of the solid material can be processed without affecting the material body.

Stanford Advanced Materials(SAM) is a global sputtering targets manufacturer which supplies high-quality and consistent products to meet our customers’ R&D and production needs. Please visit https://www.sputtertargets.net/ for more information.

Selection of Common Coating Types of PVD Coating

Physical Vapor Deposition (PVD) is a thin film preparation technique that physically vaporizes the surface of a material source (solid or liquid) into gaseous atoms, molecules, or partially ionized into ions under vacuum conditions. [1]

Achieving a cost-effective application of the coating depends on a number of factors, and for each particular processing application, there is typically only one or several possible coating options. The choice of coating and its characteristics correctly determines the difference between a significant increase in processability and little improvement. Therefore, it is necessary to select a suitable coating according to detailed parameters such as the processing speed, the cooling method, the material to be processed, and the processing method. The following is our recommended coating selection:

TiN

TiN is a versatile coating that increases tool hardness and has a higher oxidation temperature.

Uses: high-speed steel cutting tools, slow processing tools (such as low-speed turning tools), wear parts, injection molds.

TiCN

The TiCN coating is based on the addition of carbon to the TiN to increase the hardness and low coefficient of friction of the coating.

Uses: high-speed steel tools, stamping dies, forming dies

TiAlN, AlTiN

The alumina coating formed by the TiAlN/AlTiN coating during processing can effectively improve the high-temperature processing life of the processing tool. The high-temperature oxidation resistance of the AlTiN coating is about 100 degrees higher than that of TiAlN.

Uses: Carbide tools (TiAlN is recommended when the hardness of the processed material is lower than HRC45 and AlTiN is recommended when the hardness of the processed material is higher than HRC45), thin-walled stamping die (TiAlN), die-casting die (AlTiN)

CrN

CrN coating has good adhesion, corrosion resistance, and wear-resistance.

Uses: processing aluminum alloy, red copper cutter, injection mold, parts (especially with lubricating oil soaking)

CBC(DLC)

The PLATIT CBC coating is composed of a TIN+TICN+DLC structure. It has the advantages of low friction coefficient, wear-resistance, and low stress of the film layer.

Uses: Lubricating coatings, forming dies, aluminum alloys, and other bonding materials stamping dies.

Apart from features and uses, different coating materials also show different colors. If you require the specific color of your coating, you can refer to the sheet below to choose your desirable coating materials.

PVD Coating Colors

Stanford Advanced Materials(SAM) supplies high-quality and consistent products to meet our customers’ R&D and production needs. All the types we talked about above can be found in SAM. Please visit https://www.sputtertargets.net/ for more information.

Reference:

[1] What is Physical Vapor Deposition (PVD)?